Jensen’s Operator Inequality and Its Converses
نویسندگان
چکیده
where φ : A → B(H) is a unital completely positive linear map from a C-algebra A to linear operators on a Hilbert space H, and x is a self-adjoint element in A with spectrum in I. Subsequently M. D. Choi [3] noted that it is enough to assume that φ is unital and positive. In fact, the restriction of φ to the commutative C-algebra generated by x is automatically completely positive by a theorem of Stinespring. F. Hansen and G. K. Pedersen [8] proved a Jensen type inequality
منابع مشابه
Jensen’s Operator Inequality for Strongly Convex Functions
We give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve Hölder-McCarthy inequality under suitable conditions. More precisely we show that if Sp (A) ⊂ I ⊆ (1,∞), then 〈Ax, x〉 r ≤ 〈Ax, x〉 − r − r 2 (
متن کاملOn Vector-valued Hardy Martingales and a Generalized Jensen’s Inequality
We establish a generalized Jensen’s inequality for analytic vector-valued functions on TN using a monotonicity property of vector-valued Hardy martingales. We then discuss how this result extends to functions on a compact abelian group G, which are analytic with respect to an order on the dual group. We also give a generalization of Helson and Lowdenslager’s version of Jensen’s inequality to ce...
متن کاملThis is a submission to one of journals of TMRG: BJMA/AFA EXTENSION OF THE REFINED JENSEN’S OPERATOR INEQUALITY WITH CONDITION ON SPECTRA
We give an extension of the refined Jensen’s operator inequality for n−tuples of self-adjoint operators, unital n−tuples of positive linear mappings and real valued continuous convex functions with conditions on the spectra of the operators. We also study the order among quasi-arithmetic means under similar conditions.
متن کاملJENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملSOME PROPERTIES OF h-MN-CONVEXITY AND JENSEN’S TYPE INEQUALITIES
In this work, we introduce the class of h-MN-convex functions by generalizing the concept of MN-convexity and combining it with h-convexity. Namely, let M : [0, 1] → [a, b] be a Mean function given by M (t) = M (t; a, b); where by M (t; a, b) we mean one of the following functions: At (a, b) := (1− t) a + tb, Gt (a, b) = a1−tbt and Ht (a, b) := ab ta+(1−t)b = 1 At( 1 a , 1 b ) ; with the proper...
متن کامل